Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(1): 32-47, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758520

RESUMO

Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.


Assuntos
Saccharomyces cerevisiae , Transdução de Sinais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Autofagia/fisiologia , Nutrientes
2.
Autophagy ; 19(11): 2835-2836, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37573517

RESUMO

Autophagy, in the form of lipophagy, is an important catabolic pathway mediating the degradation of lipid droplets and mobilization of lipids for physiological function. However, the molecular mechanism and the protein receptors that link lipid droplets/LDs to the autophagy machinery remain unknown. Here, we discuss a recent study by Chung et al. that identifies SPART as the receptor for autophagy of lipid droplets that plays an important role in the turnover of triglycerides in motor neurons.


Assuntos
Autofagia , Metabolismo dos Lipídeos , Metabolismo dos Lipídeos/fisiologia , Autofagia/fisiologia , Gotículas Lipídicas/metabolismo , Triglicerídeos/metabolismo , Neurônios Motores/metabolismo
3.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199330

RESUMO

Autophagy is a catabolic cellular process that targets and eliminates superfluous cytoplasmic components via lysosomal degradation. This evolutionarily conserved process is tightly regulated at multiple levels as it is critical for the maintenance of homeostasis. Research in the past decade has established that dysregulation of autophagy plays a major role in various diseases, such as cancer and neurodegeneration. However, modulation of autophagy as a therapeutic strategy requires identification of key players that can fine tune the induction of autophagy without complete abrogation. In this Review, we summarize the recent discoveries on the mechanism of regulation of ATG (autophagy related) gene expression at the level of transcription, post transcription and translation. Furthermore, we briefly discuss the role of aberrant expression of ATG genes in the context of cancer.


Assuntos
Autofagia , Neoplasias , Humanos , Autofagia/genética , Homeostase , Neoplasias/genética , Citoplasma , Expressão Gênica
4.
Autophagy ; 19(3): 745-746, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36576209

RESUMO

Macroautophagy/autophagy, a cellular process that sequesters and breaks down cellular components in the lysosome/vacuole, is important in various events where cell composition undergoes changes. Broadly, autophagy is involved in T cell regulation including maintaining cell homeostasis. One process where a cell alters its composition is in the activation of helper T cells in the immune system. When helper (CD4+) T cells are activated by antigens, they both grow and alter their cellular components to become effector T cells. Autophagy is the process that facilitates the breakdown of these cellular components and is therefore hypothesized to have a role in CD4+ T cell activation. Previous research has concluded that CD4+ T cell activation induces autophagy, providing an avenue for further research aimed at examining the ways in which this induced autophagy affects CD4+ T cell proliferation and function. Toward this end, Zhou et al. researched the autophagosomal cargo present within CD4+ T cells and the impact this cargo has on CD4+ T cell proliferation.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Linfócitos T , Proteômica , Linfócitos T CD4-Positivos
5.
Life Sci Alliance ; 5(12)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36260753

RESUMO

Cell death, survival, or growth decisions in T-cell subsets depend on interplay between cytokine-dependent and metabolic processes. The metabolic requirements of T-regulatory cells (Tregs) for their survival and how these are satisfied remain unclear. Herein, we identified a necessary requirement of methionine uptake and usage for Tregs survival upon IL-2 deprivation. Activated Tregs have high methionine uptake and usage to S-adenosyl methionine, and this uptake is essential for Tregs survival in conditions of IL-2 deprivation. We identify a solute carrier protein SLC43A2 transporter, regulated in a Notch1-dependent manner that is necessary for this methionine uptake and Tregs viability. Collectively, we uncover a specifically regulated mechanism of methionine import in Tregs that is required for cells to adapt to cytokine withdrawal. We highlight the need for methionine availability and metabolism in contextually regulating cell death in this immunosuppressive population of T cells.


Assuntos
Metionina , Linfócitos T Reguladores , Linfócitos T Reguladores/metabolismo , Metionina/metabolismo , Interleucina-2/metabolismo , Racemetionina/metabolismo , Proteínas Carreadoras de Solutos/metabolismo
6.
Autophagy ; 18(5): 947-948, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35532369

RESUMO

The unique cellular organization and metabolic demands of neurons pose a challenge in the maintenance of neuronal homeostasis. A critical element in maintaining neuronal health and homeostasis is mitochondrial quality control via replacement and rejuvenation at the axon. Dysregulation of mitochondrial quality control mechanisms such as mitophagy has been implicated in neurodegenerative diseases including Parkinson disease and amyotrophic lateral sclerosis. To sustain mitophagy at the axon, a continuous supply of PINK1 is required; however, how do neurons maintain a steady supply of this protein at the distal axons? In the study highlighted here, Harbauer et al. show that axonal mitophagy is supported by local translation of Pink1 mRNA that is co-transported with mitochondria to the distal ends of the neuron. This neuronal-specific pathway provides a continuous supply of PINK1 to sustain mitophagy.


Assuntos
Mitofagia , Proteínas Quinases , Autofagia/fisiologia , Axônios/metabolismo , Mitofagia/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Autophagy ; 18(7): 1694-1714, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34836487

RESUMO

Macroautophagy/autophagy is a highly conserved nutrient-recycling pathway that eukaryotes utilize to combat diverse stresses including nutrient depletion. Dysregulation of autophagy disrupts cellular homeostasis leading to starvation susceptibility in yeast and disease development in humans. In yeast, the robust autophagy response to starvation is controlled by the upregulation of ATG genes, via regulatory processes involving multiple levels of gene expression. Despite the identification of several regulators through genetic studies, the predominant mechanism of regulation modulating the autophagy response to subtle differences in nutrient status remains undefined. Here, we report the unexpected finding that subtle changes in nutrient availability can cause large differences in autophagy flux, governed by hitherto unknown post-transcriptional regulatory mechanisms affecting the expression of the key autophagyinducing kinase Atg1 (ULK1/ULK2 in mammals). We have identified two novel post-transcriptional regulators of ATG1 expression, the kinase Rad53 and the RNA-binding protein Ded1 (DDX3 in mammals). Furthermore, we show that DDX3 regulates ULK1 expression post-transcriptionally, establishing mechanistic conservation and highlighting the power of yeast biology in uncovering regulatory mechanisms that can inform therapeutic approaches.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas Quinases , Proteínas de Saccharomyces cerevisiae , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica , Nutrientes , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Cell Mol Immunol ; 18(5): 1096-1105, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33785844

RESUMO

The function of lymphocytes is dependent on their plasticity, particularly their adaptation to energy availability and environmental stress, and their protein synthesis machinery. Lymphocytes are constantly under metabolic stress, and macroautophagy/autophagy is the primary metabolic pathway that helps cells overcome stressors. The intrinsic role of autophagy in regulating the metabolism of adaptive immune cells has recently gained increasing attention. In this review, we summarize and discuss the versatile roles of autophagy in regulating cellular metabolism and the implications of autophagy for immune cell function and fate, especially for T and B lymphocytes.


Assuntos
Imunidade Adaptativa , Autofagia , Metabolismo , Animais , Humanos , Memória Imunológica , Linfócitos/metabolismo , Transdução de Sinais
9.
J Mol Biol ; 433(5): 166809, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484718

RESUMO

Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.


Assuntos
Proteína 12 Relacionada à Autofagia/química , Proteína 5 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/química , Proteínas Relacionadas à Autofagia/química , Membrana Celular/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação , Membrana Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
10.
Autophagy ; 17(2): 383-384, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33092448

RESUMO

Macroautophagy/autophagy is a complex process that involves over 40 proteins in Saccharomyces cerevisiae. How these proteins are organized, and their activities orchestrated to facilitate an efficient autophagic mechanism remain elusive. Sawa-Makarsha et al. reconstitute the initial steps of autophagosome biogenesis during selective autophagy using autophagy factors purified from yeast. Their results show that Atg9 vesicles serve as platforms for the recruitment of the autophagy machinery, and establish membrane contact sites to initiate lipid transfer for autophagosome biogenesis.Abbreviations: GUV, giant unilamellar vesicles; PAS, phagophore assembly site; PL, proteolipisomes.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fagossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Mol Biol Cell ; 32(2): 143-156, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237833

RESUMO

Phosphoinositide signaling lipids are essential for several cellular processes. The requirement for a phosphoinositide is conventionally studied by depleting the corresponding lipid kinase. However, there are very few reports on the impact of elevating phosphoinositides. That phosphoinositides are dynamically elevated in response to stimuli suggests that, in addition to being required, phosphoinositides drive downstream pathways. To test this hypothesis, we elevated the levels of phosphatidylinositol-3-phosphate (PI3P) by generating hyperactive alleles of the yeast phosphatidylinositol 3-kinase, Vps34. We find that hyperactive Vps34 drives certain pathways, including phosphatidylinositol-3,5-bisphosphate synthesis and retrograde transport from the vacuole. This demonstrates that PI3P is rate limiting in some pathways. Interestingly, hyperactive Vps34 does not affect endosomal sorting complexes required for transport (ESCRT) function. Thus, elevating PI3P does not always increase the rate of PI3P-dependent pathways. Elevating PI3P can also delay a pathway. Elevating PI3P slowed late steps in autophagy, in part by delaying the disassembly of autophagy proteins from mature autophagosomes as well as delaying fusion of autophagosomes with the vacuole. This latter defect is likely due to a more general defect in vacuole fusion, as assessed by changes in vacuole morphology. These studies suggest that stimulus-induced elevation of phosphoinositides provides a way for these stimuli to selectively regulate downstream processes.


Assuntos
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Aminoácidos/metabolismo , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fusão de Membrana , Mutação/genética , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
12.
Autophagy ; 16(5): 779-781, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32097081

RESUMO

A key feature of macroautophagy/autophagy is the formation of a transient de novo compartment called the phagophore, which envelops cytoplasmic material, ultimately enclosing it within an autophagosome, allowing it to be targeted for degradation. Schütter et al describe a novel mechanism that spatiotemporally coordinates phospholipid synthesis to drive phagophore expansion and autophagosome formation. These authors show that during starvation, fatty acids (FAs) are channeled into phospholipid synthesis, and the newly synthesized lipids are directed toward autophagosome biogenesis.Abbreviations: ACS: acyl-CoA synthetase; ER: endoplasmic reticulum; FA: fatty acid; FAS: fatty acid synthetase; MCS: membrane contact sites; PAS: phagophore assembly site.


Assuntos
Autofagia , Autofagossomos , Proteínas Relacionadas à Autofagia , Retículo Endoplasmático , Ácidos Graxos
13.
Autophagy ; 16(3): 389-390, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31795807

RESUMO

Spermidine, a polyamine that induces macroautophagy/autophagy, exhibits anti-aging properties. It is thought that these properties of spermidine are primarily due to its ability to modulate autophagy, but the mechanistic details were hitherto unclear. Studying the effects of spermidine on B lymphocytes, Zhang et al uncover the molecular mechanism that places spermidine at the crossroads of autophagy and immune senescence. Their work highlights the role of spermidine as an anti-aging metabolite that exerts its effects through the translational control of autophagy.Abbreviations: EIF5A, eukaryotic translation initiation factor 5A; HC, hematopoietic cell; ODC1, ornithine decarboxylase 1; PBMCs, peripheral blood mononuclear cells.


Assuntos
Autofagia , Espermidina , Linfócitos B , Senescência Celular , Leucócitos Mononucleares , Poliaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...